Publications of T Pfingsten

Journal Article (3)

1.
Journal Article
Pfingsten, T.; Herrmann, D.; Schnitzler, T.; Feustel, A.; Schölkopf, B.: Feature Selection for Troubleshooting in Complex Assembly Lines. IEEE Transactions on Automation Science and Engineering 4 (3), pp. 465 - 469 (2007)
2.
Journal Article
Pfingsten, T.; Glien, K.: Statistical Analysis of Slow Crack Growth Experiments. Journal of the European Ceramic Society 26 (15), pp. 3061 - 3065 (2006)
3.
Journal Article
Pfingsten, T.; Herrmann, D.; Rasmussen, C.: Model-based Design Analysis and Yield Optimization. IEEE Transactions on Semiconductor Manufacturing 19 (4), pp. 475 - 486 (2006)

Book (1)

4.
Book
Pfingsten, T.: Machine Learning for Mass Production and Industrial Engineering. Logos Verlag, Berlin, Germany (2007), 128 pp.

Conference Paper (1)

5.
Conference Paper
Pfingsten, T.: Bayesian Active Learning for Sensitivity Analysis. In: Machine Learning: ECML 2006: 17th European Conference on Machine Learning Berlin, Germany, September 18-22, 2006, pp. 353 - 364 (Eds. Fürnkranz, J.; Scheffer, T.; Spiliopoulou, M.). 17th European Conference on Machine Learning (ECML 2006), Berlin, Germany, September 18, 2006 - September 22, 2006. Springer, Berlin, Germany (2006)

Poster (1)

6.
Poster
Pfingsten, T.; Kuss, M.; Rasmussen, C.: Nonstationary Gaussian Process Regression using a Latent Extension of the Input Space. Eighth World Meeting of the International Society for Bayesian Analysis (ISBA 2006), Benidorm, Spain (2006)

Thesis - PhD (1)

7.
Thesis - PhD
Pfingsten, T.: Machine Learning for Mass Production and Industrial Engineering. Dissertation, 124 pp., Eberhard-Karls-Universität, Tübingen, Germany (2007)

Thesis - Diploma (1)

8.
Thesis - Diploma
Pfingsten, T.: Ladungsträgerdynamik in optisch angeregten GaAs-Quantendrähten: Relaxation und Transport. Diploma, 105 pp., Westfälische Wilhelms-Universität, Münster, Germany (2003)

Report (1)

9.
Report
Kuss, M.; Pfingsten, T.; Csato, L.; Rasmussen, C.: Approximate Inference for Robust Gaussian Process Regression (Technical Report of the Max Planck Institute for Biological Cybernetics, 136). Max Planck Institute for Biological Cybernetics, Tübingen, Germany (2005), 27 pp.
Esc