Publications of S Khajehabdollahi

Journal Article (2)

Journal Article
Giannakakis, E.; Khajehabdollahi, S.; Levina, A.: Network bottlenecks and task structure control the evolution of interpretable learning rules in a foraging agent. Artificial Life Epub ahead (2024)
Journal Article
Khajehabdollahi, S.; Prosi, J.; Giannakakis, E.; Martius, G.; Levina, A.: When to Be Critical? Performance and Evolvability in Different Regimes of Neural Ising Agents. Artificial Life 28 (4), pp. 458 - 478 (2022)

Conference Paper (5)

Conference Paper
Hamidi, M.; Khajehabdollahi, S.; Giannakakis, E.; Schäfer, T.; Levina, A.; Wu, C.: Modular Growth of Hierarchical Networks: Efficient, General, and Robust Curriculum Learning. In: ALIFE 2024: Proceedings of the 2024 Artificial Life Conference. 2024 Conference on Artificial Life, Copenhagen, Denmark, July 22, 2024 - July 26, 2024. (2024)
Conference Paper
Giannakakis, E.; Khajehabdollahi, S.; Levina, A.: Environmental variability and network structure determine the optimal plasticity mechanisms in embodied agents. In: ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference, pp. 157 - 166 (Eds. Iizuka, H.; Suzuki, K.; Uno, R.; Damiano, L.; Spychala, N. et al.). ALIFE 2023: Ghost in the Machine: The 2021 Conference on Artificial Life, Sapporo, Japan, July 24, 2023 - July 28, 2023. MIT Press (2023)
Conference Paper
Khajehabdollahi, S.; Giannakakis, E.; Buendia, V.; Martius, G.; Levina, A.: Locally adaptive cellular automata for goal-oriented self-organization. In: ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference, pp. 410 - 419 (Eds. Iizuka, H.; Suzuki, K.; Uno, R.; Damiano, L.; Spychala, N. et al.). ALIFE 2023: Ghost in the Machine: The 2021 Conference on Artificial Life, Sapporo, Japan, July 24, 2023 - July 28, 2023. MIT Press (2023)
Conference Paper
Khajehabdollahi, S.; Giannakakis, E.; Prosi, J.; Levina, A.: Reservoir computing with self-organizing neural oscillators. In: Artificial Life Conference Proceedings, Vol. 2021, 78. ALIFE 2021: The 2021 Conference on Artificial Life, Praha, Czech Republic, July 19, 2021 - July 23, 2021. MIT Press (2021)
Conference Paper
Prosi, J.; Khajehabdollahi, S.; Giannakakis, E.; Martius, G.; Levina, A.: The dynamical regime and its importance for evolvability, task performance and generalization. In: Artificial Life Conference Proceedings, Vol. 2021, 79. ALIFE 2021: The 2021 Conference on Artificial Life, Praha, Czech Republic, July 19, 2021 - July 23, 2021. MIT Press (2021)

Meeting Abstract (3)

Meeting Abstract
Giannakakis, E.; Vinogradov, O.; Buendía, V.; Khajehabdollahi, S.; Levina, A.: Local excitation and lateral inhibition enable the simultaneous processing of multiple signals in recurrent neural networks. In Journal of Computational Neuroscience, 52 (Supplement 1), O5, pp. S8 - S9. 32nd Annual Computational Neuroscience Meeting (CNS*2023), Leipzig, Germany, July 15, 2023 - July 19, 2023. Kluwer Academic Publishers, Boston (2024)
Meeting Abstract
Zeraati, R.; Khajehabdollahi, S.; Giannakakis, E.; Schafer, T.; Martius, G.; Levina, A.: Long timescales needed for memory tasks arise from distinct mecha- nisms shaped by learning curricula. In Computational and Systems Neuroscience Meeting (COSYNE 2024), T-35, pp. 47 - 48. Computational and Systems Neuroscience Meeting (COSYNE 2024), Lisboa, Portugal, February 29, 2024 - March 05, 2024. (2024)
Meeting Abstract
Zeraati, R.; Khajehabdollahi, S.; Giannakakis, E.; Schäfer, T.; Martius, G.; Levina, A.: Role of single-neuron and network-mediated timescales in recurrent neural networks solving long-memory tasks. In Bernstein Conference 2023, CT 4. Bernstein Conference 2023, Berlin, Germany, September 26, 2023 - September 29, 2023. (2023)

Poster (6)

Poster
Giannakakis, E.; Buendia, V.; Vinogradov, O.; Khajehabdollahi, S.; Levina, A.: Overlapping E/I neuronal assemblies generate rich network dynamics and enable complex computations. Research in Encoding and Decoding of Neural Ensembles (AREADNE 2024), Milos, Greece (2024)
Poster
Giannakakis, E.; Buendia, V.; Vinogradov, O.; Khajehabdollahi, S.; Levina, A.: Distinct excitatory and inhibitory connectivity structures control the dynamics and computational capabilities of recurrent networks. Computational and Systems Neuroscience Meeting (COSYNE 2024), Lisboa, Portugal (2024)
Poster
Giannakakis, E.; Buendía, V.; Vinogradov, O.; Khajehabdollahi, S.; Levina, A.: Inhomogeneous connectivity structures in E/I networks enable the processing of multiple chaotic time series. Bernstein Conference 2023, Berlin, Germany (2023)
Poster
Giannakakis, E.; Levina, A.; Buendia, V.; Khajehabdollahi, S.: Synaptic-type-specific clustering optimizes the computational capabilities of balanced recurrent networks. Computational and Systems Neuroscience Meeting (COSYNE 2023), Montreal, Quebec, Canada (2023)
Poster
Giannakakis, E.; Khajehabdollahi, S.; Buendia, V.; Levina, A.: The topology of E/I recurrent networks regulates their ability to learn the dynamics of chaotic attractors. Bernstein Conference 2022, Berlin, Germany (2022)
Poster
Khajehabdollahi, S.; Giannakakis, E.; Martius, G.; Levina, A.: Cellular automata for efficient large-scale simulations of spiking networks. Bernstein Conference 2022, Berlin, Germany (2022)

Preprint (1)

Preprint
Khajehabdollahi, S.; Zeraati, R.; Giannakakis, E.; Schäfer, T.; Martius, G.; Levina, A.: Emergent mechanisms for long timescales depend on training curriculum and affect performance in memory tasks. (submitted)
Go to Editor View