Publikationen von G Rätsch

Zeitschriftenartikel (17)

Zeitschriftenartikel
Sonnenburg, S.; Rätsch, G.; Henschel, S.; Widmer, C.; Behr, J.; Zien, A.; De Bona, F.; Binder, A.; Gehl, C.; Franc, V.: The SHOGUN Machine Learning Toolbox. Journal of Machine Learning Research 11, S. 1799 - 1802 (2010)
Zeitschriftenartikel
Stegle, O.; Drewe, P.; Bohnert, R.; Borgwardt, K.; Rätsch, G.: Statistical Tests for Detecting Differential RNA-Transcript Expression from Read Counts. Nature Precedings 2010, S. 1 - 11 (2010)
Zeitschriftenartikel
Schweikert, G.; Zeller, G.; Behr, J.; Dieterich, C.; Ong, C.; Philips, P.; De Bona, F.; Hartmann, L.; Bohlen, A.; Krüger, N. et al.: mGene: Accurate SVM-based gene finding with an application to nematode genomes. Genome Research 19 (11), S. 2133 - 2143 (2009)
Zeitschriftenartikel
Schweikert, G.; Behr, J.; Zien, A.; Zeller, G.; Ong, C.; Sonnenburg, S.; Rätsch, G.: mGene.web: a web service for accurate computational gene finding. Nucleic Acids Research (London) 37 (Supplement 2), S. W312 - W316 (2009)
Zeitschriftenartikel
Graf, A.; Bousquet, O.; Rätsch, G.; Schölkopf, B.: Prototype Classification: Insights from Machine Learning. Neural computation 21 (1), S. 272 - 300 (2009)
Zeitschriftenartikel
Ben-Hur, A.; Ong, C.; Sonnenburg, S.; Schölkopf, B.; Rätsch, G.: Support Vector Machines and Kernels for Computational Biology. PLoS Computational Biology 4 (10), e1000173 (2008)
Zeitschriftenartikel
Laubinger, S.; Zeller, G.; Henz, S.; Sachsenberg, T.; Widmer, C.; Naouar, N.; Vuylsteke, M.; Schölkopf, B.; Rätsch, G.; Weigel, D.: At-TAX: A Whole Genome Tiling Array Resource for Developmental Expression Analysis and Transcript Identification in Arabidopsis thaliana. Genome Biology 9 (7), R112, S. 1 - 16 (2008)
Zeitschriftenartikel
Sonnenburg, S.; Braun, M.; Ong, C.; Bengio, S.; Bottou, L.; Holmes , G.; LeCun, Y.; Müller, K.-R.; Pereira, F.; Rasmussen, C. et al.: The Need for Open Source Software in Machine Learning. The Journal of Machine Learning Research 8, S. 2443 - 2466 (2007)
Zeitschriftenartikel
Clark, R.; Schweikert, G.; Toomajian, C.; Ossowski , S.; Zeller, G.; Shinn, P.; Warthmann, N.; Hu, T.; Fu, G.; Hinds, D. et al.: Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis thaliana. Science 317 (5836), S. 338 - 342 (2007)
Zeitschriftenartikel
Schulze, U.; Hepp, B.; Ong, C.; Rätsch, G.: PALMA: mRNA to Genome Alignments using Large Margin Algorithms. Bioinformatics 23 (15), S. 1892 - 1900 (2007)
Zeitschriftenartikel
Rätsch, G.; Sonnenburg, S.; Srinivasan, J.; Witte, H.; Müller, K.-R.; Sommer, R.-J.; Schölkopf, B.: Improving the Caenorhabditis elegans Genome Annotation Using Machine Learning. PLoS Computational Biology 3 (2 ), S. 0313 - 0322 (2007)
Zeitschriftenartikel
Sonnenburg, S.; Rätsch, G.; Schäfer, C.; Schölkopf, B.: Large Scale Multiple Kernel Learning. The Journal of Machine Learning Research 7, S. 1531 - 1565 (2006)
Zeitschriftenartikel
Tsuda, K.; Rätsch, G.: Image Reconstruction by Linear Programming. IEEE Transactions on Image Processing 14 (6), S. 737 - 744 (2005)
Zeitschriftenartikel
Tsuda, K.; Rätsch, G.; Warmuth , M.: Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection. The Journal of Machine Learning Research 6, S. 995 - 1018 (2005)
Zeitschriftenartikel
Mika, S.; Rätsch, G.; Weston, J.; Schölkopf, B.; Smola, A.; Müller, K.-R.: Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (5), S. 623 - 628 (2003)
Zeitschriftenartikel
Rätsch, G.; Mika, S.; Schölkopf, B.; Müller, K.-R.: Constructing Boosting algorithms from SVMs: an application to one-class classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (9), S. 1184 - 1199 (2002)
Zeitschriftenartikel
Schölkopf, B.; Mika, S.; Burges, C.; Knirsch, P.; Müller, K.-R.; Rätsch, G.; Smola, A.: Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10 (5), S. 1000 - 1017 (1999)

Buchkapitel (1)

Buchkapitel
Müller, K.; Mika, S.; Rätsch, G.; Tsuda, K.; Schölkopf, B.: An Introduction to Kernel-Based Learning Algorithms. In: Handbook of neural network signal processing: Neural network signal processing, 4, S. 95 - 134 (Hg. Hu, Y.; Hwang, J.-N.; Perry, S.). CRC Press, Boca Raton, FL, USA (2002)

Konferenzband (4)

Konferenzband
Chechik, G.; Leslie, C.; Noble, W.; Rätsch, G.; Morris, Q.; Tsuda, K. (Hg.): NIPS workshop on New Problems and Methods in Computational Biology (BMC Bioinformatics, 8). NIPS Workshop on New Problems and Methods in Computational Biology 2006, Whistler, Canada, 08. Dezember 2006. (2007)
Konferenzband
Machine Learning in Computational Biology. NIPS 2007 Workshop: Machine Learning in Computational Biology (MLCB 2007), Whistler, Canada, 07. Dezember 2007 - 08. Dezember 2007. (2007)
Esc