Publikationen von S Khajehabdollahi
Alle Typen
Zeitschriftenartikel (2)
1.
Zeitschriftenartikel
Epub ahead (2024)
Network bottlenecks and task structure control the evolution of interpretable learning rules in a foraging agent. Artificial Life 2.
Zeitschriftenartikel
28 (4), S. 458 - 478 (2022)
When to Be Critical? Performance and Evolvability in Different Regimes of Neural Ising Agents. Artificial Life Konferenzbeitrag (5)
3.
Konferenzbeitrag
Modular Growth of Hierarchical Networks: Efficient, General, and Robust Curriculum Learning. In: ALIFE 2024: Proceedings of the 2024 Artificial Life Conference. 2024 Conference on Artificial Life, Copenhagen, Denmark, 22. Juli 2024 - 26. Juli 2024. (2024)
4.
Konferenzbeitrag
Environmental variability and network structure determine the optimal plasticity mechanisms in embodied agents. In: ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference, S. 157 - 166 (Hg. Iizuka, H.; Suzuki, K.; Uno, R.; Damiano, L.; Spychala, N. et al.). ALIFE 2023: Ghost in the Machine: The 2021 Conference on Artificial Life, Sapporo, Japan, 24. Juli 2023 - 28. Juli 2023. MIT Press (2023)
5.
Konferenzbeitrag
Locally adaptive cellular automata for goal-oriented self-organization. In: ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference, S. 410 - 419 (Hg. Iizuka, H.; Suzuki, K.; Uno, R.; Damiano, L.; Spychala, N. et al.). ALIFE 2023: Ghost in the Machine: The 2021 Conference on Artificial Life, Sapporo, Japan, 24. Juli 2023 - 28. Juli 2023. MIT Press (2023)
6.
Konferenzbeitrag
2021, 78. ALIFE 2021: The 2021 Conference on Artificial Life, Praha, Czech Republic, 19. Juli 2021 - 23. Juli 2021. MIT Press (2021)
Reservoir computing with self-organizing neural oscillators. In: Artificial Life Conference Proceedings, Bd. 7.
Konferenzbeitrag
2021, 79. ALIFE 2021: The 2021 Conference on Artificial Life, Praha, Czech Republic, 19. Juli 2021 - 23. Juli 2021. MIT Press (2021)
The dynamical regime and its importance for evolvability, task performance and generalization. In: Artificial Life Conference Proceedings, Bd. Meeting Abstract (3)
8.
Meeting Abstract
52 (Supplement 1), O5, S. S8 - S9. 32nd Annual Computational Neuroscience Meeting (CNS*2023), Leipzig, Germany, 15. Juli 2023 - 19. Juli 2023. Kluwer Academic Publishers, Boston (2024)
Local excitation and lateral inhibition enable the simultaneous processing of multiple signals in recurrent neural networks. In Journal of Computational Neuroscience, 9.
Meeting Abstract
Long timescales needed for memory tasks arise from distinct mecha- nisms shaped by learning curricula. In Computational and Systems Neuroscience Meeting (COSYNE 2024), T-35, S. 47 - 48. Computational and Systems Neuroscience Meeting (COSYNE 2024), Lisboa, Portugal, 29. Februar 2024 - 05. März 2024. (2024)
10.
Meeting Abstract
Role of single-neuron and network-mediated timescales in recurrent neural networks solving long-memory tasks. In Bernstein Conference 2023, CT 4. Bernstein Conference 2023, Berlin, Germany, 26. September 2023 - 29. September 2023. (2023)
Poster (6)
11.
Poster
Overlapping E/I neuronal assemblies generate rich network dynamics and enable complex computations. Research in Encoding and Decoding of Neural Ensembles (AREADNE 2024), Milos, Greece (2024)
12.
Poster
Distinct excitatory and inhibitory connectivity structures control the dynamics and computational capabilities of recurrent networks. Computational and Systems Neuroscience Meeting (COSYNE 2024), Lisboa, Portugal (2024)
13.
Poster
Inhomogeneous connectivity structures in E/I networks enable the processing of multiple chaotic time series. Bernstein Conference 2023, Berlin, Germany (2023)
14.
Poster
Synaptic-type-specific clustering optimizes the computational capabilities of balanced recurrent networks. Computational and Systems Neuroscience Meeting (COSYNE 2023), Montreal, Quebec, Canada (2023)
15.
Poster
The topology of E/I recurrent networks regulates their ability to learn the dynamics of chaotic attractors. Bernstein Conference 2022, Berlin, Germany (2022)
16.
Poster
Cellular automata for efficient large-scale simulations of spiking networks. Bernstein Conference 2022, Berlin, Germany (2022)
Preprint (1)
17.
Preprint
Emergent mechanisms for long timescales depend on training curriculum and affect performance in memory tasks. (eingereicht)